[image: image1.jpg]

Overview

The Windows Task Scheduler is designed to meet the basic needs of scheduling scripts, programs or documents to run at predefined dates/times. If you have any level of sophistication in your automation requirements such as parameters, dependencies, notification, history and load balancing, you will want to evaluate third party job batch scheduling products. This document discusses the capabilities of the Windows built-in task scheduler with the Wizard, the command line utility (at.exe) and programmatic control using the Win32 API. Note that the Windows Task Scheduler refers to a scheduled program or script as a task. Basically, a task is any program or script that you can run from a command prompt (cmd.exe) or from the Start menu Run command. A task in some environments may be called an activity, job or operation. In this document we use these terms interchangeably but they have the same meaning.
The Windows Task Scheduler

Windows provides a Task Scheduler that can be used to schedule any program or script. The Windows Task Scheduler has been included with the operating system since Windows 2000. To access the task scheduler:

From the Start Menu select Settings

Select Control Panel,

Double-click on Add Scheduled Task

or

Right click on My Computer

Select Explore

Expand the Control Panel Node

Double-click on the Schedule Tasks Node

The Scheduled Task Wizard will guide you through a series of prompts where you indicate the program or script along with the date and time. Advanced settings can be used to pick multiple days and recurring times within a day. Your program or script is responsible for handling, dependencies, logging and notification. If you want to schedule your program or script to run on multiple computers, you must specifically set this up on each computer. As you can see the Windows Task Scheduler is intended to be used as a basic scheduling capability. However, many environments can benefit from its use. Administrators with programming capabilities can use scripting languages such as VB script to perform sophisticated custom tasks. Advanced programmers that are familiar with C++ and the Win32 API can program all aspects of the task scheduler.
Usage Considerations

It is very straight forward to use the Task Scheduler from the Wizard but what happens when things don’t work as expected? Many administrators have difficulty in determining what went wrong when things are not working as expected. Below is a list of items that should be considered:

The computer goes down for a planned or unplanned outage.

How do you find out if task ran successfully or not?
The Task Scheduler provides you with the status, but does that mean your program or script ran successfully?
What about security? Can your program or script access a database? Other resources?
These common situations will be encountered in most environments that use the Windows Task Scheduler. The remainder of this document will address many of the common items surrounding the use of the Windows Task Scheduler. This information will help you effectively use the Windows Task Scheduler in your environment or perhaps help you decide if you need to purchase a more advanced job scheduling product.
Security

One of the most commonly misunderstood areas in using the Windows Task Scheduler is how to setup the security. When running the Wizard you are prompted for a user name (i.e., Windows account) and password. The account and password are used when the scheduled time occurs. If your program or script has a user interface, it will be displayed visibly on the desktop for the duration of time that it runs. If no user is logged onto the computer at that time, the program will run and complete assuming it requires no user interaction. Of course if you are scheduling something, you do not want any user interaction. In addition any errors or warning situations that may arise in your code should not cause a prompt to be displayed requiring a response from a user. In most situations no user will be available to answer the prompt. Any errors should be written to a well known log file.
When the Task Scheduler runs your task it is running using the account name and password specified. The Wizard requires that an account name is specified but you can later examine the properties of the task and remove the account and password. If no account and password is available to the task scheduler, the program will run under the identity of the task scheduler itself. You can determine the identity of the task schedule as follows:

Under the Start Menu select Settings

Select Control Panel

Select Administrative Tools

Select Services

Select the Task Scheduler and double-click

The properties of the Task Scheduler are now displayed. Under the logon tab the account name and password can be specified. By default, the task scheduler is setup to run under the Local System account and interact with desktop is enabled. Interact with desktop setting allows your program to display on the interactive (i.e., logged on users’) desktop. You should not change these settings unless you have a specific reason to do so. The Local System account has the necessary privileges setup so that it is able to logon as another user given the user name and password. Note that if you change the password of an account that is being used for task scheduling, you must modify the schedule task and tell it the new password. You need to list the scheduled task, right-click and choose properties to change the password.
Database Access

If the program or script you need to schedule accesses a database you need to be sure the task scheduler runs the task using a Windows account that has access to the database. Many programs that access a database use a DSN. A DSN is setup using the Control Panel Data Sources applet. The DSN setup must be under the System tab of the Data Sources outlet. If you have setup a User DSN, you need to create a System DSN. The User DSN will not be visible to the task scheduler service.

Dependencies

A dependency is a condition that must be satisfied before a task can run. Here are a few examples:

A file must exit before the task can run.

A database must be in a certain state before a task can run.

A previous task must have completed successfully.

With the Windows Task Scheduler you need to program you dependencies within your script or program. The task scheduler will not manage dependencies for you. From the Win32 API advanced programmers do have the ability to program events which can be used to help with managing dependencies such as file change notifications. For most however this is not a viable option. If you are seeing a need to manage dependencies with your processing, it is best to start looking at third party solutions.
Sequencing/Chaining

Sequencing is in a sense another type of a dependency. It’s typical in batch environments to have the need to order a series of tasks so that they execute in a specific order. So for example, if you have task A, B and C, task A executes first and runs to completion. Then task B is started and it runs to completion, then task C and so on. If you need this type of sequencing, you will need to program and manage this within your script or program. So script A would need to call B and B would call C. Most environment that have a significant number of tasks, will want to have a way to manage the sequencing. Again, this can be done with your own code or with a third party batch scheduling solution.
Determining Success or Failure

A Windows program or script can indicate its success or failure through the use of exit codes. The exit code is reported to the operating system before the program or script completes. In Visual Basic 6.0 and prior this can be done with the ExitProcess Win32 API call. Care must be taken in executing this call within the design environment (IDE). If the statement is executed in the IDE, the IDE will terminate as the ExitProcess is interpreted by IDE process and so it exits immediately. In .NET languages such as VB and C# the integer return value from the main method is the exit code value reported to the operating system.
The Windows Task Scheduler does not examine the exit code or any other values when your task completes. You must handle any error processing within your own script or program.
Success or failure may also be determined by other factors such as how long or short a period of time a program ran. For example, you may know that your program typically takes fifteen minutes to process. If it completes in less than one minute, you may want the scheduler to create an error event.

History

You may need the ability at any point in time to determine the status of your task. With the Windows task scheduler you simply list the schedule items and the status is provided. You can list the scheduled items by right-clicking on My Computer, select Explore, expand the Control Panel node and click on Scheduled Tasks. You can see the Schedule Name, Schedule, Next Run Time, Last Run Time, Status, Last Result and Creator of the Schedule. By right-click on a specific schedule you can run the schedule now (on demand) or change its properties by selecting the Properties menu item. The Windows Task scheduler provides some useful information about when the task last ran. Advanced job scheduling systems will provide a history of each time the job ran, its duration, if it succeeded or failed, error information, the computer it ran on and more.

Notification

Notification can be added to your program or script so that on call operators can be notified by email of success or error events. Using the Windows Task Scheduler will require you to embed your notification into your programs and scripts. Many third party products provide the ability to determine the success or failure of a task and provide notification capabilities. Common notification mechanisms include email, pager and the Windows messenger services. Further the ability to notify lists of Operators and determine which operator to notify is available.
Running a Task on Multiple Computers

It’s often necessary to distribute processing to a set of computers that will participate in your job scheduling needs. The Windows Task Scheduler user interface works with a computer on an individual basis. So if you need to setup a job to run on computer B, you need to navigate to computer B or directly logon to compute B to setup this schedule. Most of the advanced job scheduling products provide the ability to schedule activity across any number of computers centrally managed by one main console. Each remote computer from the main console must have a remote component installed. This is typically referred to as an Agent. The main processing engine coordinates the activity with the Agents at each computer. You manage the main computer and do not have to visit each of the Agent computer once your initial setup is complete.
Command Line Scheduling

Windows provides a command line utility called at.exe that can be used to add, delete and change scheduled tasks. For example, to run a .bat file called test.bat at 2pm every day could be setup by typing the following at a command prompt (cmd.exe):
at.exe 14:00 /every:m,t,w,th,f,s,su c:\test\test.bat

Using the command line to maintain your tasks can be convenient especially if you need to setup the tasks on multiple computers. You could create one .bat file that has all of your tasks and then just run it on the computers that have the need to run the same tasks.

Notice that the user was not specified in the above command. The user will be that of the Task Scheduler service which is by default the Local System Account. This may or may not be sufficient for running your task. The at.exe command line syntax does not provide a way to set Windows account and password.
Programmatic Control (The Task Scheduler API)
A COM and WMI application programmatic interfaces are available for the Windows Task Schedule. Detailed information can be found in the Microsoft Developer Network (MSDN) documentation on how to programmatically control the Task Scheduler. The COM (Component Object Model) programmatic interface provided requires the ability to program in C++ or one of the .NET languages. If using .NET, you will need to use COM interop to call any COM API. The WMI (Windows Management Instrumentation) programmatic interfaces is a better choice for the VB developer. You can find complete documentation at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/win32_scheduledjob.asp
and

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/win32_scheduledjob.asp
Avanced Job Schedule Products
There are many job scheduling products on the market such as SmartBatch32 that provide features out of the box that would require a significant effort to implement with the Windows Task Scheduler. Some of the features have been mentioned in this document, but in general most of the products offer:

Dependencies

Sequencing

Parameters

Flexible Scheduling

Events

History

Status

Notification

Determining success or failure

If you need any of the above features to accomplish your job scheduling needs, you should investigate the benefits of a third party product. For example, the cost of SmartBatch32 can easily justify any one of the above requirements.
Summary

The Windows Task Scheduler is a useful utility built into the various Windows operating systems. It can be used for simple to complex scheduling needs. You have the ability run programs and scripts using the Wizard, at.exe utility or programmatically. As you get more sophisticated in your use you will be responsible for programming your scripts to handle notification, parameters, dependencies, and success and failure conditions. Advanced Job Scheduling systems automate these features to a large extent. Managing the scheduling of jobs across many computers from a central console requires an advanced job scheduling system. Products that provide load balancing and cross-platform support (e.g., Unix, mainframe, etc.) tend to be expensive. If you do not need cross-platform support, look for products that support the Windows environment only and you will tend to find much more competitive pricing.
Page 2 of 6

[image: image1.jpg]